Stereostructures of Unique 13-Membered Carbocyclic Cembranolides from the Soft Coral *Lobophytum pauciflorum*

Kazuo IGUCHI, Makoto KITADE, Yasuji YAMADA,* Akio ICHIKAWA,†
Ikuko OHTANI,† Takenori KUSUMI,†and Hiroshi KAKISAWA†*

Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192-03

†Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305

The relative and absolute configurations of the 13-membered carbocyclic cembranolides (lobophytol and lobophytol acetate) isolated from the soft coral *Lobophytum pauciflorum* were established on the basis of detailed spectroscopic analysis and chemical transformations.

In the previous paper¹⁾ we reported the isolation and structures of lobophytol and lobophytol acetate,²⁾ marine cembranolides having a unique 13-membered carbocyclic skeleton from the soft coral *Lobophytum* pauciflorum. The stereochemistry was deduced as 1 by spectroscopic analysis.³⁾ However, some recent reports⁴⁾ on related cembranolide diterpenes having different absolute configurations at the angular positions from that of 1 prompted us to reinvestigate the stereostructures of lobophytol and lobophytol acetate. This paper describes our result that the relative and absolute configurations should be revised from 1 to 2 on the basis of detailed spectroscopic analysis and chemical transformations.

Most of the carbon and proton signals of lobophytol (2a) were assigned⁵⁾ by means of H,H COSY and decoupling difference spectra. Then its relative stereochemistry and conformation were reinvestigated by considering the coupling patterns of the protons and NOEs observed in the phase-sensitive NOESY spectrum (500 MHz, CDCl₃). Appearance of NOE between two angular protons [H-3a (δ 3.50) and H-14a (δ 5.29)] confirmed the *cis*-juncture of the lactonic ring. H-3a was coupled with methylene protons (H₂-4). The large coupling constant (11.3 Hz) between H-3a and one of the methylene protons (H-4 α , δ 1.66) suggested that H-3a and H-4 α were either in an eclipse (dihedral angle θ = 0°) or anticoplanar (θ = 180°) relationship. The latter turn-

ed out to be true because H-3a showed NOE to another methylene proton (H-4 β , δ 1.57; $J_{3a,4\beta} = 3.0$ Hz). This proton also exhibited NOE to one (δ 5.50) of the exomethylene protons (H-15a). Thus, equatorial and axial natures of H-4 β and H-4 α , respectively, were established. These protons were coupled with a deshielded proton (H-5, δ 3.70) on the carbon bearing OH group. The coupling constants between H-4 α , 4 β and H-5 ($J_{4\beta,5} = 11.0$ Hz, $J_{4\alpha,5} = 2.1$ Hz) revealed that the OH was in an axial position. The '1,3-diaxial' relation of the OH and H-3a (see 2c) is in good agreement with the finding that acylation of the OH resulted in the remarkable upfield shift of H-3a.¹) Interestingly, H-5 is strongly coupled (J = 11.0 Hz) with the OH proton (δ 3.37). Assuming the equatorial orientation of the acetyl group as shown in 2c, we were able to interpret the large coupling constant, because $\theta_{OH,5}$ became 180° by hydrogen bonding of the OH proton to the acetyl carbonyl. The small J (2.1 Hz) between H-6 and H-5 as well as the existence of NOE between H-6 and H-4 α supported the axial nature of H-6. These facts led us to revision of the relative stereochemistry of lobophytol and its acetate as shown in 2a and 2b. The analysis of the coupling constants and NOEs⁶) observed for other protons suggested the conformation 2c for lobophytol.

The absolute configurations at 3a and 14a positions were established by the following chemical transformations. The enone $3^{1)}$ obtained from the natural product (2b) on treatment with methanolic NaOH, was subjected to ozonolysis followed by NaBH₄ reduction, to give a diol 4, which was transformed to a dibenzoate $5.^{7)}$ The absolute configuration of 5 was elucidated by transforming the alcohol 6, which was derived from *D*-mannitol,^{4b)} into 13. The corresponding acetate 7 of 6 was treated with trifluoroacetic acid in CH₂Cl₂ to give a γ -lactone $8^{8)}$ in 49 % yield. Methanolysis of 8 followed by protection of hydroxy group gave 10. Treatment of 10 with LDA followed by addition of CH₃OCH₂Cl at -78 °C gave an α -methoxymethyl γ -lactone 11 in 57 % yield. The compound 11 was then transformed into a dibenzoate $13,^{9,10}$) whose physical data were identical with those of 5 except for the chiroptical properties; $5 [\alpha]_D +38.1^\circ$, CD λ_{ext} 243 nm ($\Delta \epsilon$ +0.20, EtOH), $13 [\alpha]_D -36.6^\circ$, CD λ_{ext} 246 nm ($\Delta \epsilon$ -0.69, EtOH).

These chemical transformations clarified the absolute configurations (3aS, 14aS): therefore 5S and 6S configurations were also elucidated when coupled with the above-mentioned result for relative stereochemistries.

References

- 1) Y. Yamada, S. Suzuki, K. Iguchi, K, Hosaka, H. Kikuchi, Y. Tsukitani, H. Horiai, and F. Shibayama, *Chem. Pharm. Bull.*, 27, 2394 (1979).
- 2) We named lobophytol and lobophytol acetate for 2a and 2b, respectively.

- 3) Y. Yamada, S. Suzuki, K. Iguchi, H. Kikuchi, Y. Tsukitani, H. Horiai, and F. Shibayama, *Tetrahedron Lett.*, 21, 3911 (1980).
- a) M. Kobayashi, Chem. Pharm. Bull., 36, 488 (1988);
 b) H. Nagaoka, M. Iwashima, H. Abe, and Y. Yamada, Tetrahedron Lett., 30, 5911 (1989);
 c) T. Kusumi, I. Ohtani, Y. Inouye, and H. Kakisawa, ibid., 29, 4731 (1988).
- 5) ¹H NMR data of **2a** (CDCl₃): δ 6.18 (1H, d, J = 3.0 Hz; H-15b), 5.50 (1H, d, J = 3.0 Hz; H-15a), 5.29 (1H, dd, J = 10.5, 7.8 Hz; H-14a), 5.08 (1H, bd, J = 10.5 Hz; H-14), 5.03 (1H, bt, J = 7.8 Hz; H-10), 3.70 (1H, tt, J = 11.0, 2.1 Hz; H-5), 3.50 (1H, ddq, J = 11.3, 7.8, 3.0 Hz; H-3a), 3.37 (1H, d, J = 11.0 Hz; OH), 2.34 (1H, ddd, J = 8.8, 2.5, 2.1 Hz; H-6), 2.34 (1H, m, H-11), 2.27 (1H, m, H-8), 2.25 (1H, m, H-12), 2.17 (3H, s; H₃-16), 2.10 (1H, m, H-11), 2.07 (1H, m, H-8), 2.05 (1H, m, H-12), 2.00 (1H, ddt, J = 14.0, 2.5, 8.8 Hz, H-7), 1.74 (3H, bs; H₃-19), 1.66 (1H, ddd, J = 14.2, 11.3, 2.1 Hz; H-4 α), 1.60 (3H, bs; H₃-18), 1.57 (1H, ddd, J = 14.2, 11.0, 3 Hz; H-4 β), 1.53 (1H, ddt, J = 14.0, 8.0, 2.5 Hz, H-7). ¹³C NMR data of **2a** (CDCl₃): δ 215.39 (s; C-17), 170.35 (s; C-2), 144.27 (s), 140.59 (s), 134.44 (s), 126.30 (d), 121.45 (t; C-15), 119.74 (d), 76.41 (d; C-14a), 68.93 (d; C-5), 56.31 (d; C-6), 40.18 (t), 40.03 (t), 38.51 (d), 38.17 (t), 30.97 (q; C-17), 25.09 (t), 23.57 (t), 15.79 (q), 14.90 (q).6) NOEs observed for **2a** in the phase-sensitive NOESY (500 MHz): H-15a \leftrightarrow H-4 β ; H-14a \leftrightarrow H-5; H-14a \leftrightarrow H-5; H-14a \leftrightarrow H-5; H-14b \leftrightarrow H-5; H-14b \leftrightarrow H-5; H-14c \leftrightarrow H-5; H-16c \leftrightarrow H-6; H-6c \leftrightarrow H-4 α .
- 7) **5**: [α]_D +38.1° (c 1.00, CHCl₃); UV λ_{max} 245 nm (ϵ 39500, EtOH); ¹H NMR (400 MHz, CDCl₃): δ 2.07 (2H, q, J = 6.8 Hz), 2.67 (1H, ddd, J = 3.4, 4.4, 10.3 Hz), 3.01 (1H, qd, J = 7.9, 10.3 Hz), 3.33 (3H, s), 3.67 (1H, dd, J = 3.4, 9.7 Hz), 3.75 (1H, dd, J = 4.4, 9.7 Hz), 4.44 (2H, m), 4.55 (1H, dd, J = 4.5, 12.5 Hz), 4.63 (1H, dd, J = 3.2, 12.5 Hz), 4.89 (1H, ddd, J = 3.2, 4.5, 7.9 Hz), 7.60 (2H, d, J = 8.6 Hz), 7.62 (2H, d, J = 8.6 Hz), 7.82 (2H, d, J = 8.6 Hz), 7.86 (2H, d, J = 8.6 Hz).
- 8) **8**: $[\alpha]_D$ +9.1° (c 1.24, CHCl₃); IR ν_{max} 1781, 1746 cm⁻¹ (film); ¹H NMR (400 MHz, CDCl₃): δ 2.13 (3H,s), 2.43 (1H, dd, J = 10.5, 17.3 Hz), 2.61 (1H, dd, J = 8.8, 17.3 Hz), 2.87 (1H, m), 3.36 (3H, s), 3.55 (1H, m), 3.62 (1H, m), 4.21 (1H, dd, J = 4.7, 12.4 Hz), 4.41 (1H, dd, J = 3.2, 12.4 Hz), 4.60 (2H, s), 4.72 (1H, ddd, J = 3.2, 4.7, 7.8 Hz).
- 9) 11 \rightarrow 12; MeOH-HCl (10 : 1), 40 °C: 12 \rightarrow 13; *p*-BrC₆H₄COCl-pyridine.
- 10) 13: [α]_D -36.6° (c 1.53, CHCl₃); UV λ_{max} 245 nm (ϵ 40000, EtOH).

(Received October 29, 1990)